Skip to contents

Creating a Pipeline

Add your analysis pipeline steps

add_subgroups()
Add sub groups to the multiverse pipeline
add_filters()
Add filtering/exclusion criteria to a multiverse pipeline
add_variables()
Add a set of variable alternatives to a multiverse pipeline
add_model()
Add a model and formula to a multiverse pipeline
add_preprocess()
Add arbitrary preprocessing code to a multiverse analysis pipeline
add_postprocess()
Add arbitrary postprocessing code to a multiverse pipeline
add_summary_stats()
Add a set of descriptive statistics to compute over a set of variables
add_reliabilities()
Add item reliabilities to a multiverse pipeline
add_correlations()
Add correlations from the correlation package in easystats
add_parameter_keys()
Add parameter keys names for later use in summarizing model effects
expand_decisions()
Expand a set of multiverse decisions into all possible combinations

View, Check, and Test

View metadata, check the code, and test the pipeline

create_blueprint_graph()
Create a Analysis Pipeline diagram
detect_multiverse_n()
Detect total number of analysis pipelines
detect_n_subgroups()
Detect total number of subgroups in your pipelines
detect_n_filters()
Detect total number of filtering expressions your pipelines
detect_n_variables()
Detect total number of variable sets in your pipelines
detect_n_models()
Detect total number of models in your pipelines
summarize_filter_ns()
Summarize samples sizes for each unique filtering expression
show_code_subgroups() show_code_filter() show_code_preprocess() show_code_model() show_code_postprocess() show_code_summary_stats() show_code_corrs() show_code_reliabilities()
Show multiverse data code pipelines

Run your Pipeline

Execute the whole pipeline and all alternatives

run_multiverse()
Run a multiverse based on a complete decision grid
run_multiverse_furrr()
Run a multi-core, multiverse based on a complete decision grid
run_descriptives()
Run a multiverse-style descriptive analysis based on a complete decision grid

Unpack Results

Unpack your results for viewing, plotting, and understanding

reveal()
Reveal the contents of a multiverse analysis
reveal_model_parameters()
Reveal the model parameters of a multiverse analysis
reveal_model_performance()
Reveal the model performance/fit indices from a multiverse analysis
reveal_model_warnings()
Reveal any warnings about your models during a multiverse analysis
reveal_model_messages()
Reveal any messages about your models during a multiverse analysis
reveal_reliabilities()
Reveal a set of multiverse cronbach's alpha statistics
reveal_corrs()
Reveal a set of multiverse correlations
reveal_summary_stats()
Reveal a set of summary statistics from a multiverse analysis
condense()
Summarize multiverse parameters