Package index
-
add_subgroups()
- Add sub groups to the multiverse pipeline
-
add_filters()
- Add filtering/exclusion criteria to a multiverse pipeline
-
add_variables()
- Add a set of variable alternatives to a multiverse pipeline
-
add_model()
- Add a model and formula to a multiverse pipeline
-
add_preprocess()
- Add arbitrary preprocessing code to a multiverse analysis pipeline
-
add_postprocess()
- Add arbitrary postprocessing code to a multiverse pipeline
-
add_summary_stats()
- Add a set of descriptive statistics to compute over a set of variables
-
add_reliabilities()
- Add item reliabilities to a multiverse pipeline
-
add_correlations()
- Add correlations from the
correlation
package ineasystats
-
add_parameter_keys()
- Add parameter keys names for later use in summarizing model effects
-
expand_decisions()
- Expand a set of multiverse decisions into all possible combinations
-
create_blueprint_graph()
- Create a Analysis Pipeline diagram
-
detect_multiverse_n()
- Detect total number of analysis pipelines
-
detect_n_subgroups()
- Detect total number of subgroups in your pipelines
-
detect_n_filters()
- Detect total number of filtering expressions your pipelines
-
detect_n_variables()
- Detect total number of variable sets in your pipelines
-
detect_n_models()
- Detect total number of models in your pipelines
-
summarize_filter_ns()
- Summarize samples sizes for each unique filtering expression
-
show_code_subgroups()
show_code_filter()
show_code_preprocess()
show_code_model()
show_code_postprocess()
show_code_summary_stats()
show_code_corrs()
show_code_reliabilities()
- Show multiverse data code pipelines
-
run_multiverse()
- Run a multiverse based on a complete decision grid
-
run_multiverse_furrr()
- Run a multi-core, multiverse based on a complete decision grid
-
run_descriptives()
- Run a multiverse-style descriptive analysis based on a complete decision grid
-
reveal()
- Reveal the contents of a multiverse analysis
-
reveal_model_parameters()
- Reveal the model parameters of a multiverse analysis
-
reveal_model_performance()
- Reveal the model performance/fit indices from a multiverse analysis
-
reveal_model_warnings()
- Reveal any warnings about your models during a multiverse analysis
-
reveal_model_messages()
- Reveal any messages about your models during a multiverse analysis
-
reveal_reliabilities()
- Reveal a set of multiverse cronbach's alpha statistics
-
reveal_corrs()
- Reveal a set of multiverse correlations
-
reveal_summary_stats()
- Reveal a set of summary statistics from a multiverse analysis
-
condense()
- Summarize multiverse parameters