Reveal the model parameters of a multiverse analysis
Source:R/unpack-multiverse.R
reveal_model_parameters.Rd
Reveal the model parameters of a multiverse analysis
Arguments
- .multi
a multiverse list-column
tibble
produced byrun_multiverse
.- effect_key
character, if you added parameter keys to your pipeline, you can specify if you would like filter the parameters using one of your parameter keys. This is useful when different variables are being switched out across the multiverse but represent the same effect of interest.
- .unpack_specs
character, options are
"no"
,"wide"
, or"long"
."no"
(default) keeps specifications in a list column,wide
unnests specifications with each specification category as a column."long"
unnests specifications and stacks them into long format, which stacks specifications into adecision_set
andalternatives
columns. This is mainly useful for plotting.
Examples
library(tidyverse)
library(multitool)
# Simulate some data
the_data <-
data.frame(
id = 1:500,
iv1 = rnorm(500),
iv2 = rnorm(500),
iv3 = rnorm(500),
mod1 = rnorm(500),
mod2 = rnorm(500),
mod3 = rnorm(500),
cov1 = rnorm(500),
cov2 = rnorm(500),
dv1 = rnorm(500),
dv2 = rnorm(500),
include1 = rbinom(500, size = 1, prob = .1),
include2 = sample(1:3, size = 500, replace = TRUE),
include3 = rnorm(500)
)
# Decision pipeline
full_pipeline <-
the_data |>
add_filters(include1 == 0,include2 != 3,include2 != 2,scale(include3) > -2.5) |>
add_variables("ivs", iv1, iv2, iv3) |>
add_variables("dvs", dv1, dv2) |>
add_variables("mods", starts_with("mod")) |>
add_model("linear_model", lm({dvs} ~ {ivs} * {mods} + cov1))
pipeline_grid <- expand_decisions(full_pipeline)
# Run the whole multiverse
the_multiverse <- run_multiverse(pipeline_grid[1:10,])
#> Error in purrr::map(seq_len(nrow(.grid)), .progress = show_progress, function(x) { multi_results <- list() if ("models" %in% names(.grid)) { multi_results$models <- run_universe_model(.grid = .grid, decision_num = .grid$decision[x], add_standardized = add_standardized, save_model = save_model) } purrr::reduce(multi_results, dplyr::left_join, by = "decision")}): ℹ In index: 1.
#> Caused by error in `map2()`:
#> ℹ In index: 1.
#> ℹ With name: model.
#> Caused by error:
#> ! object 'the_data' not found
# Reveal results of the linear model
the_multiverse |>
reveal_model_parameters()
#> Error: object 'the_multiverse' not found