Reveal a set of multiverse cronbach's alpha statistics
Source:R/unpack-multiverse.R
reveal_reliabilities.Rd
Reveal a set of multiverse cronbach's alpha statistics
Arguments
- .descriptives
a descriptive multiverse list-column
tibble
produced byrun_descriptives
.- .which
the specific name of the alphas
- .unpack_specs
character, options are
"no"
,"wide"
, or"long"
."no"
(default) keeps specifications in a list column,wide
unnests specifications with each specification category as a column."long"
unnests specifications and stacks them into long format, which stacks specifications into adecision_set
andalternatives
columns. This is mainly useful for plotting.
Examples
library(tidyverse)
library(multitool)
# create some data
the_data <-
data.frame(
id = 1:500,
iv1 = rnorm(500),
iv2 = rnorm(500),
iv3 = rnorm(500),
mod = rnorm(500),
dv1 = rnorm(500),
dv2 = rnorm(500),
include1 = rbinom(500, size = 1, prob = .1),
include2 = sample(1:3, size = 500, replace = TRUE),
include3 = rnorm(500)
)
# create a pipeline blueprint
full_pipeline <-
the_data |>
add_filters(
include1 == 0,
include2 != 3,
include2 != 2,
include3 > -2.5,
include3 < 2.5,
between(include3, -2.5, 2.5)
) |>
add_variables(var_group = "ivs", iv1, iv2, iv3) |>
add_variables(var_group = "dvs", dv1, dv2) |>
add_correlations("predictor correlations", starts_with("iv")) |>
add_summary_stats("iv_stats", starts_with("iv"), c("mean", "sd")) |>
add_reliabilities("vio_scale", starts_with("iv")) |>
add_model("linear model", lm({dvs} ~ {ivs} * mod)) |>
expand_decisions()
my_descriptives <- run_descriptives(full_pipeline)
#> Error in purrr::map(seq_len(nrow(filter_grid)), .progress = TRUE, function(x) { multi_results <- list() if ("corrs" %in% names(filter_grid)) { multi_results$corrs <- run_universe_corrs(.grid = filter_grid, decision_num = filter_grid$decision[x]) } if ("summary_stats" %in% names(filter_grid)) { multi_results$stats <- run_universe_summary_stats(.grid = filter_grid, decision_num = filter_grid$decision[x]) } if ("reliabilities" %in% names(filter_grid)) { multi_results$reliabilities <- run_universe_reliabilities(.grid = filter_grid, decision_num = filter_grid$decision[x]) } purrr::reduce(multi_results, dplyr::left_join, by = "decision")}): ℹ In index: 1.
#> Caused by error in `map2()`:
#> ℹ In index: 1.
#> ℹ With name: predictor_correlations_rs.
#> Caused by error:
#> ! object 'the_data' not found
my_descriptives |>
reveal_reliabilities(vio_scale_alpha)
#> Error: object 'my_descriptives' not found